Hepworth

\square

Drain and Sewerage Systems

Underground drainage systems

Hepworth

TERMS OF USE

All information is correct at the time of going to press. However, we reserve the right to alter, amend or update any product, system and services described in this brochure. We accept no responsibility for the wrong interpretation of statements made.
© Copyright Hepworth PME LLC
This document contains confidential and proprietary information. Reproduction or disclosure of any part is only allowed with written authorization by Hepworth PME LLC.

All rights are vested at Hepworth PME LLC

Table of Contents:

Section
Introduction 4
Manufacturing Standards / uPVC Pipe physical Properties 5
Hepworth Drainage Pipe Data 6-8
Slotted Pipe 9-10
Hepworth Technocore Pipe System 11-16
Hepworth Drainage Fittings 17-19
Wavin Drainage Fittings 20-24
Bottle Gully 25-26
System Design 27-32
Underground Drainage Installation Instructions 33-37
Storage \& Handling 38-39
Chemical Resistance Table 40-44

Introduction

Hepworth manufactures and markets integrated piping systems to the civil and building construction sectors. This business was established over 40 years ago in Dubai and now manufactures pipes in Dubai and Abu Dhabi in the UAE, Qatar and in Oman. In addition, it trades through operating companies in Bahrain and Saudi Arabia and exports throughout the MENA region and beyond.

Underground
 Drain and
 Sewerage
 Systems

Hepworth PME LLC also provides pipes and fitting for gravity drainage installation for effective disposal of waste water. Push and fit joints are used to allow pipe expansion. And a patented purposed designed sealing method is incorporated to provide better sustainability.

Hepworth Technocore is introducing Multilayer Pipe Technology in UAE with the collaboration of Wavin groups of Netherlands, one of the leading dealers of PVC multilayer plastic pipe systems. The systems are manufactured in sizes from 110 mm and 400 mm uPVC in terracotta colour. They have a leak free fitting and has less carbon plastic. Thus it needs lesser energy and fewer resource to manufacture.

Even though its fairly new to UAE, it is widely accepted in Europe, North America, Australia, South Africa and many other countries for its performance and environmental advantage.

TECHNOCORE Technology

HEPWORTH uPVC DRAINAGE SYSTEMS

Material	$:$	Un-Plasticized Poly Vinyl Chloride (uPVC)
Colour	$:$	Terracotta
Sizes	$:$	Non Kitemarked 82mm (Reference standard BS EN 4514) Kitemarked 110mm to 400mm (As per BS EN 1401)
Standard Lengths $:$	Standard Lengths: 3m, 4m and 6m (Special lengths are available as per customer requirement)	
Joint type	$:$Push-Fit System (The push-fit joint allows for the expansion of pipes and incorporated with a unique and patented purpose designed sealing method.	
	Rubber ring seals are made from specially moulded EPDM material to BS EN 681)	

Soil Socket Detail

Prefabricated Items

For installations that require special products, a prefabrication service is available. Information on these items can be had from our Technical Services Department.

Effect of Chemicals

uPVC is resistant to most acids, alkalis and oil but liable to attack by concentrated sulphuric, nitric and chromic acids and organic solvents. For specialized applications, consult the Technical Services Department for advice.

Thermal Movement

Coefficient of linear expansion $0.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ temperature rise, i.e. 1 mm per 2 m length for a temperature rise of $10^{\circ} \mathrm{C}$. An allowance is made for expansion of pipes and pipe fittings in each socket.

Effect of Solar Radiation

Prolonged exposure to sunlight will cause the colour to fade. It may also result in slight loss of impact strength. We would not expect this to seriously affect the performance of the system.

Effect of Frost

Frost does not affect the performance of the system. However, impact strength is reduced during sub-zero temperatures.

Hepworth

Hepworth Drainage \& Sewerage Pipe Data PLASTIDRAIN (SDR 41)

Plain End Pipe

BS 4514 (Dimensionally Comply to BS 4514)

D (mm)	Std L (Mtr)	BSI Certification	Nominal OD		Item Code
			Min (DN)	$\operatorname{Max}(\mathrm{DN})$	
82	6	-	82.4	82.8	HVT46YPNKM113

BS EN 1401

$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	Std L (Mtr)	BSI Certification	Nominal OD		Wall Thickness (mm)	Item Code
			$\begin{aligned} & \text { Min } \\ & \text { (DN) } \end{aligned}$	Max (DN)		
110	3	ฑ	110	110.3	3.2	HVT13YPKM114
110	4	®	110	110.3	3.2	HVT14YPKM114
110	6	ϑ	110	110.3	3.2	HVT16YPKM114
160	3	®	160	160.40	4.0	HT13YPKM116
160	4	ө	160	160.40	4.0	HT14YPKM116
160	6	అ	160	160.40	4.0	HT16YPKM116
200	3	ө	200	200.50	4.9	HVT23YPKM118
200	4	®	200	200.50	4.9	HVT24YPKM118
200	6	అ	200	200.50	4.9	HVT26YPKM118
250	3	ө	250	250.50	6.2	HVT23YPKM120
250	4	®	250	250.50	6.2	HVT24YPKM120
250	6	V	250	250.50	6.2	HVT26YPKM120
315	3	®	315	315.60	7.7	HVT23YPKM121
315	4	θ	315	315.60	7.7	HVT24YPKM121
315	6	θ	315	315.60	7.7	HVT26YPKM121
400	3	అ	400	400.70	9.8	HVT23YPKM124
400	4	θ	400	400.70	9.8	HVT24YPKM124
400	6	ק	400	400.70	9.8	HVT26YPKM124

Hepworth

SEWERDRAIN (SDR 41)

Socket (Push Fit) End Pipe

BS 4514 (Dimensionally Comply to BS 4514)

D (mm)	Std L (Mtr)	BSI Certification	Nominal OD		Item Code
			$\operatorname{Min}(\mathrm{DN})$	$\operatorname{Max}(\mathrm{DN})$	
82	6	-	82.4	82.8	HVT46YINKM113

BS EN 1401

$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Std L } \\ & \text { (Mtr) } \end{aligned}$	BSI Certification	Nominal OD		Wall Thickness (mm)	Item Code
			Min (DN)	Max (DN)		
110	3	ϑ	110	110.3	3.2	HVT13YIKM114
110	4	θ	110	110.3	3.2	HVT14YIKM114
110	6	V	110	110.3	3.2	HVT16YIKM114
160	3	θ	160	160.40	4.0	HVT13YIKM116
160	4	ϑ	160	160.40	4.0	HVT14YIKM116
160	6	θ	160	160.40	4.0	HVT16YIKM116
200	3	అ	200	200.50	4.9	HVT23YIKM118
200	4	V	200	200.50	4.9	HVT24YIKM118
200	6	ฑ	200	200.50	4.9	HVT26YIKM118
250	3	ϑ	250	250.50	6.2	HVT23YIKM120
250	4	θ	250	250.50	6.2	HVT24YIKM120
250	6	θ	250	250.50	6.2	HVT26YIKM120
315	3	®	315	315.60	7.7	HVT23YIKM121
315	4	®	315	315.60	7.7	HVT24YIKM121
315	6	ө	315	315.60	7.7	HVT26YIKM121
400	3	θ	400	400.70	9.8	HVT23YIKM124
400	4	ฑ	400	400.70	9.8	HVT24YIKM124
400	6	®	400	400.70	9.8	HVT26YIKM124

Hepworth

SEWERDRAIN (SDR 34)

Plain End Pipe

SDR 34 SN-8 uPVC Sewer drain Pipes (Metric series) Manufactured in accordance to EN 1401

			Nominal OD			
Wall (mm)	Std L (Mtr)	BSI Certification	Min (DN)	Max (DN)	(mm)	Item Code
110	6	-	110	110.3	3.2	N/A
160	6	-	160	160.4	4.7	HVT16Y34PNK116
200	6	-	200	200.5	5.9	HVT26Y34PNK118
250	6	-	250	250.6	7.3	HVT26Y34PNK120
315	6	-	315	315.6	9.2	HVT26Y34PNK121
400	6	-	400	400.7	11.7	HVT26Y34PNK124

Socket (Push Fit) End Pipe
SDR 34 SN-8 uPVC Sewer drain Pipes (Metric series) Manufactured in accordance to EN 1401

$\underset{(\mathrm{mm})}{\mathrm{D}}$	Std L (Mtr)	BSI Certification	Nominal OD		Wall Thickness (mm)	Item Code
			$\begin{aligned} & \text { Min } \\ & \text { (DN) } \end{aligned}$	Max (DN)		
110	6	-	110	110.3	3.2	N/A
160	6	-	160	160.4	4.7	HVT16Y34INK116
200	6	-	200	200.5	5.9	HVT26Y34INK118
250	6	-	250	250.6	7.3	HVT26Y34INK120
315	6	-	315	315.6	9.2	HVT26Y34INK121
400	6	-	400	400.7	11.7	HVT26Y34INK124

uPVC Slotted Pipe

Plan

Elevation

Hepworth

Section A-A

Sizes mm	Slot Length		Slot Width		M in. No of Slot per Mtr/ Row	M in. Slot Area mm $2 / m$	Pitch mm	M in. Infiltration Rates Lit/M in/M
	Min	Max	Min	Max				
	mm		mm					
82	48	50	3	4	13	3744	75	40
110	63	65	3	4	13	4914	75	52
160	63	65	3	4	13	4914	75	105
200	76	78	3	4	13	5928	75	126.67
250	98	100	3	4	13	7644	75	163.33
315	120	125	3	4	13	9360	75	263
400	130	135	3	4	13	10140	75	263
Note: Based on test to BS 5911								

TECHNOCORE

MULTILAYER
 PIPE DATA

waven

TECHNOCORE Technology

Tradionally in the Middle East, drain PVC pipes are extruded as a single solid monolayer during the manufacturing process. Technocore pipes are manufactures by a more complex production process and are composed of three distinct layers. this innovative technique produces pipes with improved performance properties whilst reducing the total material content.

TECHNOCORE Technology is proven

Hepworth's Technocore technology was developed together with the Wavin Group, based in the Netherlands, one of the world's leaders in PVC multilayer plastic pipe technology. Although this technology is new to the Middle East region, it has a solid track record and has been specified and used in Europe for over 25 years. Indeed, in Europe, the majority of PVC drain pipes are now manufactures using this technology. PVC multilayer plastics pipes are also widely accepted in North America, Australia, South Africa and many other countries around the world because of their superior performance and environmental advantages.

TECHNOCORE Technology is Green

Multilayer pipe technology was originally developed to improve the performance of pipes and to help the construction industry to achieve a lower carbon footprint, leading to a more sustainable world. There is a growing demand from governments, agencies and legislative bodies for greener products, i.e. those that require less energy and use fewer natural resources. Our new technocore technology, which reduces the usage of carbon during manufacturing, helps our customers meet increasingly tough new regulations and their own sustainability commitments.

Advantages of TECHNOCORE technology

The main benefits of the multilayer technology are,

Pipes are up to 20% lighter, making handling easier and improving site efficiency.
Pipes are stronger and have more impact resistance than conventional solid wall pipes, so they are less prone to damage when being transported and when handled on site.

Reduced material usage means that there are environmental advantages with regard to the lower carbon footprint (16\% reduction in CO_{2} emissions over the whole supply chain)

Also, despite their other advantages, multilayer pipes are still equal to conventional solid wall pipes in terms of:

Dimensional accuracy

Chemical
Working life resistance

Hepworth

New Technology Better Performance

 Better for the Environment

> Better mechanical properties

Fast installation

16% less
CO_{2}

Fittings

Technocore multilayer pipes are fully compatible with existing PVC fittings and can be utilized with push-fit or solventwelded coupling systems.

Technocore Pipe Dimension

Specification as per standard

Drainage (EN 13476-2)									
	Pipe Dimensions				Solvent Socket		Rubber Ring Socket		
	Outer Diameter		Total Wall Thickness		Mean Min Internal Diameter (dsm)	Socket Length (Min)	Size	Mean Min. Internal Diameter (dsm)	Min Socket Length (L)
Size	O.D Min	O.D Max	Min W.T	Max W.T					
110 mm	110.0 mm	110.30 mm	3.20 mm	3.80 mm	110.30 mm	48 mm	110 mm	110.40 mm	58 mm
160 mm	160.0 mm	160.40 mm	4.0 mm	4.60 mm	160.40 mm	58 mm	160 mm	160.50 mm	74 mm
200 mm	200.0 mm	200.50 mm	4.90 mm	5.60 mm	200.50 mm	66 mm	200mm	200.60 mm	90 mm
250 mm	250.0 mm	250.50 mm	6.20 mm	7.10 mm	250.50 mm	66 mm	250mm	250.80 mm	125 mm
315 mm	315.0 mm	315.60 mm	7.70 mm	8.70 mm	315.60 mm	66 mm	315 mm	316.00 mm	132 mm
400 mm	400.0 mm	400.70 mm	9.80 mm	11.00 mm	400.70 mm	66mm	400 mm	401.20 mm	150 mm

Specification as per standard

Pipes are normally available and supplied with integral joints and solvent socket in 6 m or 4 m length.

Specific gravity	1.35 to $1.6 \mathrm{~g} / \mathrm{cm}^{3}$
Inflammability	Self-extinguishing
Specific heat	$1,00 \mathrm{Kj} / \mathrm{kg} 60^{\circ} \mathrm{C}$ long term, 100 deg C short term
Thermal conductivity	Coefficient of heat conduction $=0,16 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{K}\left(\mathrm{or}^{\circ} \mathrm{C}\right)$
Co-efficient of linear expansion	$0,08 \mathrm{~mm} / \mathrm{m} \mathrm{K}(\mathrm{or} \mathrm{C})$
Vicat softening point	$79^{\circ} \mathrm{C}$
Impact strength	$2-5 \mathrm{~mJ} / \mathrm{mm}^{2}$
Modulus of elasticity	$\mathrm{Emod}=3000 \mathrm{~N} / \mathrm{mm}^{2}$
Poisson's ratio	0,39
Tensile strength	$45 \mathrm{~N} / \mathrm{mm}^{2}$
Elongation at break	$=>80 \%$

Corrosion resistance

The major finding of a recent study is that PVC Pipes have the lowest overall failure rate when compared to cast iron, ductile iron, concrete and steel pipes.

PVC pipes won't rush or corrode over time because it does not react with air and water the way metal does which results in a significantly longer lifetime the pipe.

Chemical resistance

PVC pipes exhibit excellent resistance to a wide range of chemical reagents in temperatures up to $50^{\circ} \mathrm{C}$. PVC pipes can be used indoors or to transport chemicals or waste products without risk of materials eating through the pipe.

Operating temperature

Up to $60^{\circ} \mathrm{C}$

Hepworth

Abrasion Resistance

PVC pipes exhibit outstanding resistance to wear and abrasion. PVC pipe has proven more durable than metal, concrete and clay pipe for the transport of abrasive slurries.

PVC is extremely tough and its abrasion resistance has been confirmed by numerous studies and over 50 years of proven service.

Flexibility - The flexibility of technocore pipes allow them to cope with drain movements, subsidence and expansive clays Handling/Installation - The ease of handling, installation and transport provide overall project savings.
Easily Machined/Cut - It may be cut and machined with simple tools, ready for jointing, anywhere on the pipe barrel.

Rubber Ring Joints

The rubber ring joint is integrally moulded on one end of the pipe. The opposite (spigot) end of the pipe is chamfered and has a "depth of entry" mark near the end. Each joint is capable of handling some expansion and contraction as well as angular deflection. The seal ring is designed to provide a watertight joint at high and low pressures.

Solvent Weld Joint

Solvent cement jointing is a welding process and not a glueing process. If done correctly, separation will not be possible after the curing period. Jointing of pipe should be an interference fit between the components before solvent cement is applied. There are different solvent cements available for applications. Be sure to use the correct cement and that it has not "dried out" prior to use.

Couplers

Double Socket Coupler

D (mm)	A	Item Code
82	101	3P02B*
110	110	$4 P 02 B$
110	118	$4 P 02 C$
160	149	6P02C(B)

Single Socket Coupler

$\mathbf{D}(\mathbf{m m})$	\mathbf{A}	Item Code
110	108	4P02D
160	139	6P02D

Bend 45° Double Socket

D (mm)	A	B	Item Code
110	158	158	$4 P 04 B$
160	266	266	6P04B

Bend 87.5° Single Socket

D (mm)	A	B	Item Code
82	75	69	$3^{3 P 03 A *}$
110	160	162	$4 P 03 A$

Bends 87.5° Double Socket

D (mm)	A	B	C	Item Code
110	123	123	176	$4 P 03 B$
160	170	161	226	$6 P 03 B$

[^0]Hepworth

Bends 45° Single Socket

$\mathbf{D}(\mathbf{m m})$	A	B	C	Item Code
82	99	90	158	$3 P^{*} 04 A^{*}$
110	105	119	191	$4 P 04 A(B)$

Single Branches

Branch Tee (Reducing)

D (mm)	A	B	C	Item Code
160×110	170	150	172	6 P 08 E

Branch Tee (Equal)

$\mathbf{D}(\mathbf{m m})$	A	B	C	Item Code
82	155	73	146	$3 P 08 B$
110	150	110	135	$4 P 08 B$

Branch Tee (Equal) triple socket

D (mm)	A	B	C	Item Code
82	130	125	120	3 P08B *
110	170	160	140	4 4P08C
160	230	170	220	$6 P 08 C$

Y Branch 45° (Equal) Double

D (mm)	A	B	C	Item Code
160	229	298	141	6 P09B* *

Y Branch 45° (Equal) Triple Socket

* Non standard

D (mm)	A	B	C	Item Code
82	119	154	83	3P09C*
110	148	192	96	$4 P 09 C$
160	223	291	135	6P09C

Hepworth

Y Branch 45° (Reducing) Double Socket

D (mm)	A	B	C	Item Code
160×110	165	205	115	$6 P 09 F$

Access Bend 87.5°

$\mathbf{D}(\mathbf{m m})$	A	B	C	Item Code
110	214	160	112	4P03D

Access Plug (Screwed)

$\mathbf{D}(\mathbf{m m})$	A	B	C	Item Code
82	21	52	92	$3 A^{*} 21 A^{*}$
110	21	52	119	$4 A 21 A$

Reducers

Access Hopper

$\mathbf{D}(\mathbf{m m})$	\mathbf{A}	\mathbf{B}	\mathbf{C}	Item Code
110	170	124	118	4 H 10 A

P Trap

$\mathbf{D}(\mathrm{mm})$	Item Code
110	4 T 10 C

WAVIN SEWER FITTINGS RUBBER RING

Material	$:$	Wavin Drainage and Sewerage fittings are made from Poly Vinyl Chloride (PVC), SN 4 (SDR 34)
Joint	$:$	Rubber-ring
Colour	$:$	Terracotta

Double Socket (Push-Fit)

D (mm)	Du	L1	L2	Item Code
160	182	149	73	WOPVD9050473
200	225	220	108	WOPVD9050474
250	284	250	125	WOPVD9050475
315	353	310	132	WOPVD9050476
400	444	390	160	WOPVD9050477

Elbow 15° (Socket / Spigot)

$\mathbf{D}(\mathbf{m m})$	$\mathbf{Z 1}$	Z2	L2	Item Code
160	12	18	81	WOPVD9050330
200	13	24	100	WOPVD9050340
250	19	30	121	WOPVD9050350
315	23	38	142	WOPVD9050360
400	115	80	155	WOPVD9050370

Hepworth

Elbow 30 ${ }^{\circ}$ (Socket / Spigot)

$\mathbf{D}(\mathbf{m m})$	$\mathbf{Z 1}$	$\mathbf{Z 2}$	$\mathbf{L 2}$	Item Code
160	23	29	81	WOPVD9050331
200	30	39	100	WOPVD9050341
250	37	49	121	WOPVD9050351
315	47	61	142	WOPVD9050361
400	115	55	155	WOPVD9050371

Elbow 45° (Socket / Spigot)

D (mm)	Z1	Z2	L2	Item Code
160	36	42	81	WOPVD9050332
200	46	55	100	WOPVD9050342
250	57	69	121	WOPVD9050352
315	72	86	142	WOPVD9050362
400	125	120	155	WOPVD9050372

Elbow 88° (Socket / Spigot)

$\mathbf{D}(\mathbf{m m})$	$\mathbf{Z 1}$	$\mathbf{Z 2}$	L2	Item Code
160	84	90	81	WOPVD9050334
200	105	114	100	WOPVD9050344
250	132	143	121	WOPVD9050354
315	166	180	142	WOPVD9050364
400	125	120	155	WOPVD9050374

Branch 45° (Socket / Socket / Spigot)

D (mm)	Z1	Z2	Z3	L1	L2	Item Code
110×110	25	133	133	276	60	WOPVD9050027
160×110	0	168	158	309	81	WOPVD9050063
160×160	36	193	193	386	81	WOPVD9050067
200×110	58	195	239	484	100	WOPVD9050081
200×160	19	221	214	419	100	WOPVD9050085
200×200	46	241	241	470	100	WOPVD9050087
250×110	-38	290	310	510	60	WOPVD9050089
250×160	-3	260	250	550	160	WOPVD9050103
250×200	24	350	310	640	166	WOPVD9050105
250×250	57	340	340	680	143	WOPVD9050107
315×110	-67	310	320	600	120	WOPVD9050117
315×160	-33	340	340	680	180	WOPVD9050121
315×200	6	416	340	652	144	WOPVD9050123
315×250	39	437	408	751	144	WOPVD9050125
315×315	83	398	432	819	144	WOPVD9050127
400×110	-70	414	3565	649	155	WOPVD9050135
400×160	-53	450	368	660	155	WOPVD9050139
400×200	-25	405	400	720	155	WOPVD9050141
400×250	10	473	465	820	155	WOPVD9050143
400×315	42	533	482	869	155	WOPVD9050145
400×400	122	605	512	979	155	WOPVD9050147

Tee 87° (Socket / Socket / Spigot)

D (mm)	Z1	Z2	Z3	L1	L2	Item Code
110×110	60	61	61	236	60	WOPVD9050028
160×110	60	168	159	342	-	WOPVD9050064
160×160	84	87	89	329	81	WOPVD9050068
200×110	61	100	67	-	-	WOPVD9050082
200×160	86	108	91	394	-	WOPVD9050086
200×200	105	111	11	435	-	WOPVD9050088
250×110	65	129	71	-	-	WOPVD9050100
250×160	89	132	95	-	-	WOPVD9050104
250×200	108	134	115	-	-	WOPVD9050106
250×250	132	138	138	-	-	WOPVD9050108
315×110	90	219	120	514	144	WOPVD9050118
315×160	120	242	140	564	144	WOPVD9050122
315×200	140	320	160	604	144	WOPVD9050124
315×250	175	340	200	680	144	WOPVD9050126
315×315	180	298	217	645	144	WOPVD9050128
400×110	120	264	165	630	155	WOPVD9050136
400×160	175	277	160	680	155	WOPVD9050139
400×200	140	284	245	730	155	WOPVD9050142
400×250	175	265	200	720	155	WOPVD9050144
400×315	240	298	260	845	155	WOPVD9050146
400×400	255	575	250	858	155	WOPVD9050148

Reducer (Socket / Spigot)

$\mathbf{D}(\mathbf{m m})$	$\mathbf{Z 1}$	$\mathbf{Z 2}$	L2	Item Code
160×110	12	18	81	WOPVD9050415
200×160	13	24	100	WOPVD9050420
250×200	19	30	121	WOPVD9050427
315×250	23	38	142	WOPVD9050431
400×315	115	80	155	WOPVD9050435

Socket Plug

D (mm)	L1	Item Code
110	36	WOPVD9050511
160	42	WOPVD9050513
200	80	WOPVD9050514
250	80	WOPVD9050515
315	80	WOPVD9050516
400	90	WOPVD9050517

End Cap

$\mathbf{D}(\mathbf{m m})$	L1	Item Code
110	32	WOPVD9050531
160	42	WOPVD9050533
200	50	WOPVD9050534
250	55	WOPVD9050535
315	62	WOPVD9050536
400	70	

Screwed Access Plug

$\mathbf{D}(\mathrm{mm})$	Item Code
160	WOPVD3001660

Access Pipe

D (mm)	L1	Item Code
110	262	WOPVD9050401
160	400	WOPVD9050403
200	524	WOPVD9050404

HUNTER-UK BOTTLE GULLY (DS41)

Sealed access version (Solvent fit for 110 mm pipe) 56 mm side bosses with drill-starts

110 mm Bottle gully circular top used for underground drainage systems. This is a circular topped bottle gully that allows you to connect pipes from 32 mm to 110 mm . The heavy duty grille on the top of the fitting is suitable for pedestrian use and opens easily for maintenance purposes. It is large enough to insert a rod for easy cleaning and general maintenance. It is made from a strong plastic material that can be used with an old clay pipe system, or as part of a completely new network. The properties are:

- Roadable gully with easy drain access.
- Removable back inlet plug.
- Terracotta color.
- Made with impact resistant uPVC material.
- Multifunctional inlets connect from 32 mm to 110 mm pipe.
- Convenient push fit installation.
- Can be installed in wet conditions.
- Compatible with plastic drainage systems.

HEPWORTH PLASTICS DRAINAGE AND

SEWERAGE SYSTEM

Product Properties

Approvals

'"Hepworth has a declared company objective to design and manufacture products to the highest standards of quality and technical excellence, to satisfy all appropriate standards, customer requirements and company specifications.

To achieve this objective, the policy of the Board of Directors is to establish, maintain and continually improve through regular review, an effective and efficient quality management system. The quality system provides a framework for control based on the ISO 9001 series of Quality System Standards.

Where appropriate, this policy is endorsed through third party certification such as BAI Kitemark License schemes. In certain circumstances, where recognised national/international technical product standards do not exist, or are considered insufficient, third party approval/quality system certification is obtained through British Board of Agreement."

Physical Properties

Specific Gravity	1.35 to $1.6 \mathrm{~g} / \mathrm{cm}^{3}$
Inflammability	Will not support combustion
Specific Heat	$1.00 \mathrm{KJ} / \mathrm{Kg}^{\circ} \mathrm{C}$
Thermal Conductivity	$1600 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
Coefficient of Linear Expansion	$0.05 \mathrm{~mm} / \mathrm{m}^{\circ} \mathrm{C}$
Vicat Softening Point (5 Kg)	$79^{\circ} \mathrm{C}$
Impact Strength	Complies with BS1401
WIS 4-31-05:1988	
Modulus of Elasticity	$2800 \mathrm{MN} / \mathrm{m}^{2}$ at $20^{\circ} \mathrm{C}$
Poisson's Ration	$1: 3$

Colour
Plastidrain to BS1401
Sewerdrain to BS1401

British Standards

110 mm and 160 mm pipe and fittings

200-400mm pipe and fittings

Rubber rings, rubber to: -

EN 1401-1 - specification for unplasticized PVC underground drain pipe and fittings

EN 1401-1 - specification for unplasticized PVC pipe and fittings for gravity sewer

EN 681-1 - specification for elastomeric joint rings for pipework and pipelines

System Design

Structural Design

The structural performance of PVC-U pipes is assessed as the ability of the pipe to resist deformation under soil and traffic loads. The accepted long-term limit for deformation is 6% of the vertical diameter, and is determined for the particular pipe according to its loading and installation conditions.

Design Procedure

The soil and traffic loads should be determined from Table 1 for the particular pipe diameter, burial depth and traffic conditions. These values are based on a saturated bulk density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$, should the site conditions indicate a different soil density then the soil load values can be adjusted on a pro rata basis. The total load (soil load + traffic load) should be determined according to the depth of cover and assumed traffic loading, and the corresponding deformation found by reference to chart number 1 .

If the predicted deformation is less than 6%, then the installation conditions are acceptable.
The design charts are based on the formula

Where different values from given above are to be applied, separate calculations will be necessary.
NB - For Pipes with depths of cover less than 0.6 m in fields and 0.9 m in carriage ways special protection will be required (see Trench Construction Section)

APPENDIX III

fLOW Charts

The charts have been designed and prepared by Peter Lamont, M.A., F.I.C.E., F.I.W.E., using Colebrook's well-known Transition Region formula, which he has transposed into the form:

Where
$\mathrm{V}=$ velocity
$\mathrm{g}=$ gravitational acceleration
$\mathrm{i}=$ hydraulic gradient (dimensionless)
$v=$ kinematic viscosity of fluid
d = internal diameter
$k=a$ linear measure of effective roughness
Roughness values of 0.6 mm and 0.003 mm have been assumed for pipes carrying foul water and storm water respectively.

Diagrams have also been prepared for the proportionate discharge and velocity in circular pipes flowing partly full.

These have been based on velocity proportional to (hydraulic radius) 0.667 and may be used in conjunction with the values of discharge and velocity obtained from the Foul Water and Storm Water Diagrams.

DISCHARGE (RUNNING FULL): LITERS PER SECOND

DISCHARGE (RUNNING FULL): CUBIC METERS PER SECOND

SEWERDRAIN FLOWING PARTLY FULL

USE OF DIAGRAMS

The line diagrams above (based on V proportional to $d^{0.667}$) may be used to determine the discharge, velocity and/or depth of flow of SEWERDRAIN flowing partly full.

Example 1: A 315 mm storm water sewer (actual I.D. $=299.6 \mathrm{~mm}$) at a gradient of 1.300 , has an estimated discharge when full of 85 l / s at a velocity of $1.2 \mathrm{~m} / \mathrm{s}$ according to the storm water chart.

Calculate discharge and velocity when running $2 / 3$ full (i.e. $x / d=0.667$).
From discharge diagram: Proportional discharge $=0.79$.
Hence discharge $=0.79 \times 85=67 \mathrm{l} / \mathrm{s}$.
From velocity diagram: Proportional velocity $=1.108$.
Hence velocity $=1.108 \times 1.2=1.3 \mathrm{~m} / \mathrm{sec}$.
Example 2 : A 500 mm foul water sewer (actual I.D. $=475.6 \mathrm{~mm}$) at a gradient of 1.400 , has an estimated discharge when full of 180 I / s at a velocity of $1.05 \mathrm{~m} / \mathrm{s}$ according to the foul water chart.

Calculate depth of flow and velocity for a discharge of $60 \mathrm{I} / \mathrm{s}$.
Proportional discharge $=60 / 180=0.333$.
From discharge diagram: Proportional discharge $\mathrm{x} / \mathrm{d}=0.4$.
Hence depth of flow $=0.40 \times 475.6=190 \mathrm{~mm}$.
From velocity diagram: Proportional velocity at $\mathrm{x} / \mathrm{d} 0.40=0.90$.
Hence velocity $=1.05 \times 0.90=0.95 \mathrm{~m} / \mathrm{s}$.

CHART No. 1

Predicted Deformation of PVC-U Pipes

Modulus of Soil Reaction $\mathrm{E}^{\prime}=7 \mathrm{mn} / \mathrm{m}^{2}$
Pipe Dia (mm)

NB
If E^{\prime} value of the bedding material differs from the above
then separate calculations will be necessary

Soil and Traffic Load (kN/m)

Type of Load	Pipe diameter (mm)											
	110	160	180*	200	225*	250	$300 *$	315	400	450	500	610
Depth of Cover 0.9m												
Wide Trench Soil	2.0	2.9	3.6	3.6	4.5	4.5	6.0	5.7	7.2	8.2	9.1	11.0
Main Traffic	11.4	14.3	18.2	18.2	23.8	23.8	28.5	28.1	35.5	40.2	44.3	53.5
Light Traffic	9.2	11.5	14.7	14.7	19.1	19.1	24.2	22.6	28.6	32.3	36.0	45.6
Field Traffic	5.3	6.5	9.0	9.0	14.0	14.0	14.1	14.7	16.7	18.9	20.8	25.0
Depth of Cover 1.2m												
Wide Trench Soil	2.6	3.8	4.8	4.8	6.0	6.0	8.0	7.5	9.6	11.0	12.2	14.6
Main Traffic	8.6	10.9	14.0	14.0	18.2	18.2	23.2	27.1	27.1	30.6	33.8	41.0
Light Traffic	6.2	7.8	10.0	10.0	12.9	12.9	16.5	19.3	19.3	21.7	23.9	29.0
Field Traffic	3.6	4.6	5.8	5.8	7.6	7.6	9.6	11.2	11.2	12.7	14.0	16.9
Depth of Cover 1.8m												
Wide Trench Soil	4.0	5.8	7.2	7.2	9.0	9.0	12.1	11.3	14.4	16.5	18.3	22.0
Main Traffic	5.9	7.5	9.7	9.7	12.6	12.6	16.2	14.9	18.9	21.5	23.9	29.0
Light Traffic	3.3	4.1	5.2	5.2	6.8	6.8	8.8	8.1	10.3	11.6	12.8	15.6
Field Traffic	1.9	2.4	3.0	3.0	4.0	4.0	5.1	4.7	6.0	6.8	7.5	9.1
Depth of Cover 2.4m												
Wide Trench Soil	5.3	7.7	9.6	9.6	12.0	12.0	16.1	15.1	19.2	21.9	24.3	29.3
Main Traffic	4.6	5.7	7.3	7.3	9.6	9.6	12.4	11.4	14.5	16.4	18.1	22.1
Light Traffic	1.9	2.5	3.2	3.2	4.1	4.1	5.3	4.9	6.3	7.1	7.8	9.5
Field Traffic	1.2	1.5	1.9	1.9	2.4	2.4	3.1	2.8	3.6	4.1	4.6	5.5
Depth of Cover 3.0m												
Wide Trench Soil	6.6	9.6	12.0	12.0	15.0	15.0	20.1	18.9	24.0	27.4	30.4	36.6
Main Traffic	3.6	4.5	5.8	5.8	7.5	7.5	9.4	8.9	11.2	12.8	14.2	17.3
Light Traffic	1.3	1.7	2.2	2.2	2.9	2.9	3.7	3.4	4.2	4.6	5.1	6.4
Field Traffic	0.7	1.0	1.3	1.3	1.7	1.7	2.1	1.9	2.3	2.7	3.1	3.7
Depth of Cover 4.0m												
Wide Trench Soil	8.8	12.8	16.0	16.0	20.0	20.0	26.8	25.1	32.0	36.6	40.6	48.8
Main Traffic	2.5	3.2	4.2	4.2	5.4	5.4	6.9	6.4	8.0	9.1	10.1	12.2
Light Traffic	0.8	0.1	1.4	1.4	1.7	1.7	2.2	2.0	2.5	2.9	3.2	3.9
Field Traffic	0.4	0.6	0.7	0.7	1.0	1.0	1.2	1.1	1.4	1.6	1.8	2.2
Depth of Cover 4.9m												
Wide Trench Soil	10.8	15.7	19.6	19.6	24.5	24.5	32.8	30.9	39.2	44.8	49.7	59.8
Main Traffic	1.9	2.5	3.2	3.2	4.0	4.0	5.1	4.7	5.9	6.7	7.4	9.0
Light Traffic	0.5	0.7	0.9	0.9	1.2	1.2	1.5	1.3	1.7	1.9	2.1	2.6
Field Traffic	0.3	0.4	0.4	0.4	0.7	0.7	0.9	0.8	1.0	1.1	1.2	1.5
Depth of Cover 6.1m												
Wide Trench Soil	13.4	19.5	24.4	24.4	30.5	30.5	40.9	38.4	48.8	55.8	61.9	74.4
Main Traffic	1.3	1.7	2.2	2.2	2.7	2.7	3.5	3.2	4.1	4.7	5.2	6.3
Light Traffic	0.3	0.5	0.6	0.6	0.7	0.7	0.9	0.8	1.1	1.2	1.3	1.7
Field Traffic	0.1	0.2	0.3	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.9

UNDERGROUND DRAINAGE INSTALLATION INSTRUCTIONS

JOINTING

Preparing Pipe Ends

Pipes cut on site must be clean cut at right angles to their horizontal axis. Deburr the cut end with a scraper.

Depth of Entry Mark

Some plain ended fittings have a depth of entry mark molded on the spigot. This depth of entry allows the pipe to expand into the fitting socket by a minimum of 12 mm . Insert the spigot into the socket until the depth of entry mark is just visible. All pipes (whether site cut or otherwise) and other plain ended fittings must be inserted to the full depth of the socket, marked at the socket face, and then withdrawn at least 12mm (See Figure. 3).

Figure 2: Pipe end

Ring Seal Joints

Pipe couplers and most bends and junctions (in the 110 mm and 160 mm sizes) are supplied with sockets on all ends. These sockets are fitted with ring seals which act as both a sealing and expansion joint. The correct sequence for ring seal jointing is as follows:

1. Check that the pipe is correctly prepared (See Pipe preparation, Figure. 1) and that the ring seal is properly seated in its housing.
2. Make sure that both the pipe or fitting spigot and ring seal socket are dry, clean and free from grit or dust.
3. Lubricate evenly around the spigot (NOT the socket) with Parabond Lubricant (P72).
4. Make sure that the components to be joined are correctly aligned.
5. Push the spigot fully into the socket. Mark the spigot at the socket face and then withdraw the spigot by a minimum of 12 mm . If the spigot is already marked with the depth of entry, push it into the socket until the depth of entry mark is just visible.
6. Do not cut back the straight leg sections of Long Radius Bends as only the spigot end provided is suitable for jointing.

DRAIN INSTALLATION

Installation notes

The information included on this page is based on the recommendations given in: BS 8000-14: 1989, BS EN 1610: 1998, BS EN 752: 2008 and British Board of Agreement Certificate: 87/1835.

Bedding and backfill must be of the correct specification. Excavated 'as-dug' material may be suitable. (See BS EN 1610 and BS 8000: Part 14).

Excavation

It is important to take precautions against trench collapse. Do not open trenches too far in advance of pipe laying. Support the sides of trenches that are deeper than 1.2 meters. Keep trench widths as narrow as practicable but not less than 300 mm wider than the pipe diameter, i.e. 150 mm clear each side of the pipe to allow proper compaction of the side fill.

Bedding

Hepworth Drain pipes laid on trench Bottom

Where the 'as-dug' material is suitable*, the bottom of the trench may be trimmed to form the pipe bed (See Figure. 4).
*Suitable material is defined as granular material in accordance with the recommendations of BS EN 1610 and BS 8000-14.

Small depressions should be made to accommodate sockets. After the pipe has been laid. These should be filled carefully ensuring that no voids remain under, or around, the sockets.

When the formation is prepared, the pipes should be laid upon it true to line and level within the specified tolerances.

Each pipe should be checked and any necessary adjustments to level made by raising or lowering the formation, ensuring that the pipes finally rest evenly on the adjusted formation throughout the length of the barrels. Adjustment should never be made by local packing. When the formation is low and does not provide continuous support, it should be brought up to the correct level by placing and compacting suitable material.

Hepworth Drain pipes laid on a 50 mm minimum processed granular bed

Where the as-dug material can be hand trimmed by shovel and is not puddled when walked upon, a 50 mm depth of bedding material may be used. In this case the material must be nominal 10 mm single sized aggregate with no sharp edges, i.e. pea gravel (See Figure. 5).

Figure 4: Hepworth Pipes laid on the trench bottom

Figure 5: Hepworth Drain pipes laid on 50 mm minimum of processed granular material

Where the backfill above the pipe contains stones larger than 40 mm or larger than 40 mm or were the pipework is deeper than $2 m$ in poor ground, the processed granular material should extend to at least 100 mm above the pipe crown

Hepworth Drain pipes laid on a 100 mm minimum processed granular bed

When the as-dug material is not suitable as a bedding, a layer of suitable granular material as defined in BS EN 1610:1998, section 5.3.3.1, must be spread evenly on the trimmed trench bottom before the pipes are installed. The trench should be excavated to allow for a minimum thickness of 100 mm granular bedding under the pipes (See Figure. 6).

The trench formation should be prepared, the bedding placed and the pipes laid in accordance with BS EN 1610:1998 and BS 8000-14:1989.

When the pipes are to be laid on rock, compacted sand or gravel requiring mechanical means of trimming should be used, or in very soft or wet ground, the bedding should be as detailed above.

Figure 6: Hepworth Drain pipes laid on 100mm minimum of processed granular material

Backfill Sequence

1. Place suitable side fill material evenly on each side of the pipe in 100 mm layers. Pay particular attention to the area under the lower quadrants of the pipe. Hand tamp well at each layer up to the pipe crown. Leave the pipe crown exposed.
2. If 'as-dug' material is free from stones larger than 40 mm , imported processed granular material is not needed above the pipe crown (See Figure. 5). Cover the pipe crown with a minimum of 300 mm of compacted 'as-dug' material. If 'as-dug' material contains stones larger than 40 mm , or the pipe is deeper than 2 meters in poor ground, extend the processed granular material for at least 100 mm above the pipe crown.
3. In both cases, hand tamp the material fully at the sides of the pipe while tamping lightly over the crown.

Continue hand tamping until a finished layer of 300 mm , 225 mm in adoptable situations, has been placed over the pipe.
4. 'As-dug' material may be backfilled in $300 \mathrm{~mm} / 225 \mathrm{~mm}$ layers and mechanically tamped. Dumpers or other vehicles must not be driven along the pipe tracks as a means of compacting. Surround vertical or steeply raking pipes with 150 mm bedding material, suitably tamped up to the invert level of the incoming pipe (Backdrops) or to ground level.

Pipe Protection

As PVC-U pipes are flexible they can accommodate a degree of ground movement and pressure without damage. However, if the pipe needs protection the following recommendations should be followed: -

Traffic free areas

In areas where no loading is expected (e.g. in gardens) pipes at depths less than 0.6 meter, should be protected against risk of damage from garden implements, for example by placing over them a layer of concrete paving slabs with at least a 75 mm layer of suitable material between pipe and slab. (See Figure. 7).

Public highways / adoptable Situations

In areas where loading is expected, pipes laid at depths less than 0.9 meter below the finished surface of a road, (1.2 m in adoptable situations) should be protected with a concrete slab of suitable strength which should bridge the full width of the trench so it sits on the trench wall (See Figure. 8). Or, the pipe can be totally surrounded in concrete (See Figure. 9). Concrete of suitable strength or the requirement for reinforced concrete to be determined by the engineer or adopting authority. The normal maximum depth for all installations is 10 meters.

Figure 7: Pipe Protection in Traffic Free Areas Concrete paving slabs

Hepworth

Use of concrete

If pipes are to be surrounded with concrete, make sure they do not float when the concrete is poured. Filling the pipes with water will generally provide enough ballast but side restraint may be needed to maintain alignment.
To maintain a certain degree of flexibility, insert 18 mm compressible material, such as fiberboard or polystyrene, around the pipe joints (See Figure. 9). These boards must be at least the width of the concrete surrounding.

Pipes under buildings

A drain may run under a building if at least 100 mm of granular or other flexible filling is provided round the pipe. On sites where excessive subsidence is possible additional flexible joints is advisable or other solutions such as suspended Drainage. If ground settlement is expected, and the crown of the pipe is within 300 mm of the underside of the slab, concrete encasement should be used integral with the slab.

Figure 8: Pipe Protection - Concrete slab

Pipes penetrating walls

If a short length of pipe is to be built into a structure, a suitable wall protection sleeve should be used. The short length of pipe should then be inserted through the wall protection sleeve and fixed with couplers placed either side within 150 mm from the wall face. The length of the next 'rocker' pipe should not exceed 0.6 meter. This will compensate for any settlement of the building or made up ground.

Alternatively, where it is not necessary for a pipe to be built into a structure, the provision of a lintel, relieving arch or sleeve may be used, leaving a gap of not less than 50 mm around the pipe. Effective means should be adopted to prevent the entry of gravel, rodents or gases.

Figure 9: Pipe Protection - Concrete surround

Backdrop Connections

A backdrop to a manhole is a method of connecting two substantially different drain line invert levels in a manhole. This can be done either internally or externally by using the following 110 mm or equivalent 160 mm fittings, as follows.

Installation of Backdrops

1. For an internal backdrop, use a Socket Plug or a Screwed Access Cover plus an Equal Access Junction vertical pipe to suit, a Short Radius Bend or a Sealed Access Fitting to suit (See Figures. 10).
2. Fix internal vertical pipe securely to the manhole wall with Brackets.
3. For an external backdrop, use an 87.5° Equal Junction vertical pipe to suit and either a Long Radius Bend, or a Short Radius Bend, (See Figure. 11). (For bedding of vertical pipes see 'Backfill Sequence’ page 35).
4. Alternatively, ramped backdrops can be used, for drops of less than 1.8 meters, by means of two 45° Bends and a raking length of pipe.

Figure 10: Sealed Access Manhole with internal backdrop

Figure 11: Open Channel Manhole with stepped invert and external backdrop

STORAGE AND HANDLING

Resources and Planning

The main contractor, or sub-contractor, needs no special equipment or power. Contractors are responsible for checking layout drawings to ensure they are correct so that expensive site alterations do not have to be made after laying.

Contractors may make up Hepworth components such as gully assemblies offsite and in clean working conditions particularly when components have solvent welded joints.

Pipes and fittings made from PVC-U, Polypropylene and/of Polyethylene are lightweight - between one sixth and one tenth the weight of equivalent clay pipes. Nevertheless, care must be taken during transport, handling and storage.

Figure 12: Loading block bundles on to flat bed vehicle

Transport

Block Bundles

Generally, pipes are delivered pre-packed in block bundles of standard quantities. In these bundles, pipes are held by straps and timber stretchers.

Loose pipes and fittings

When vehicles with a flatbed are used for transporting loose pipes, make sure the bed is free of nails and other projections. Support pipes throughout their length. Load pipes so that they do not overhang the vehicle by more than one meter.

Always load pipes with larger diameters and thicker walls before those of smaller diameters and thinner walls. Hepworth pipes should always be lifted off the vehicle, not dragged, thus avoiding damage to the pipe ends.

Make sure vehicles have adequate side supports at approximately 2 meter spacing, and that all uprights are flat, with no sharp edges. Secure pipes during transit. Fittings are supplied in cardboard boxes or plastic bags.

Handling

Always be careful to avoid damage when handling pipe. Cold weather reduces their impact strength, so take extra care when handling pipe in wintry conditions.

When unloading block bundles mechanically, use either nylon belt slings or fork lift trucks with smooth forks. Metal slings, hooks or chains must not come into direct contact with the pipe.

Load and unload loose pipes by hand and avoid using skids. When loose pipes have been transported one inside the other, always remove the inner pipes first.
Do not drop or drag pipes.

STORAGE AND HANDLING

Storage

Block Bundles

Store block bundles on a reasonably flat surface free from sharp projections likely to damage the pipes.
Block bundles can be stored up to three meters high without extra side supports or bearers. In addition, block bundles will remain free standing when cut.

Take care when removing pipes from bundles as the straps are under considerable tension and may flail when cut.

Figure 13: Storage of loose pipes on the ground

Figure 14: Storage of loose pipes on bearers

Loose pipes

Store loose pipes on a reasonably flat surface free of sharp projections. Provide side supports at least every 2 meters. These supports should preferably consist of battens at least 75 mm wide (See Figure. 13).

Ideally, loose pipes should be uniformly supported throughout their entire length. If this is not possible, place timber supports at least 75 mm wide at 1 -meter maximum centers beneath the pipes (See Figure. 14).

Stack pipes of different size and wall thickness separately. If this is not possible, stack pipes with larger diameters and thicker walls under those with smaller diameters and thinner walls.

Do not stack pipes more than seven layers in height or above a maximum height of 2 meters.
Storage in areas of high temperature (above $23^{\circ} \mathrm{C}$) is anticipated the stack height should never exceed 4 layer or 1 meter maximum height. Such stacks should be protected from the effects of weathering (particularly ultra violet exposure) by placing tarpaulins or similar sheets over them, secularly fixed to the timber support posts, to provide protected and shaded conditions, which allow a free passage of air around the pipes.

Fittings

Store fittings supplied in plastic bags away from direct sunlight.
If fittings have to be stored outside in their plastic bags, open the bags to prevent a build-up of temperature.
The above storage requirements apply to the European climatic conditions. In tropical climates reduce the stack height and store pipes and fittings under cover or in the shade.

Hepworth

CHEMICAL RESISTANCE TABLE
uPVC PIPE, FITTINGS AND E.P.D.M SEALS

Hepworth

CHEMICAL RESISTANCE TABLE

uPVC PIPE, FITTINGS AND E.P.D.M SEALS

Hepworth

CHEMIGAL RESISTANCE TABLE
uPVC PIPE, FITTINGS AND E.P.D.M SEALS

MEDIUM (NAME)	CONCENTRATION	RATING @ 200		MEDIUM (NAME)	CONCENTRATION	RATING @ 20°	
		PVC-U	EPDM			PVC-U	EPDM
HYDROXYLAMINE SULPHATE	All aqueous	+	c	MINERAL ACIDs (iii)			
IODINE SOLUTION	65\% iodine in ethanol	-	0	Sulphuric Phosphoric	$\begin{aligned} & 30 \% \\ & 60 \% \end{aligned}$	+	+
IRON SALTS	All aqueous	+	+	Water	10\%		
ISO-OCTANE	Technically pure	+	+	MOLASSES		+	+
ISOPROPYL ALCOHOL	Technically pure	+	+	MOLASSES WORT		+	+
ISOPROPYL ETHER	Technically pure	-	C	MONOCHLOROACETIC ACID ETHYL ESTER	Technically pure	\bigcirc	c
LACTIC ACID	10\% aqueous	+	+	MONOCHLOROACETIC ACID	Technically pure	O	C
LANOLINE	Technically pure	+	c				
LEAD ACETATE	Aqueous saturated	+	+	MORPHALIN	Technically pure	-	c
LINSEED OIL	Technically pure	+	C	MOWILTH D	Usual commercial	+	c
LIQUERS		+	c	NAPHTALENE	Technically pure	-	c
LUBRICATING OILS		+	C	NICKEL SALTS	Cold saturated aqueous	+	+
LUBRICATING OILS Free of aromatic compounds		+	C	NITRIC ACID	6.3\% aqueous Up to 40% aqueous 65\% aqueous	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$
MAGNESIUM SALTS	All aqueous	+	+		100\%	-	c
MALEIC ACID	Cold saturated aqueous	+	c	NITROBENZENE	Technically pure	-	c
MALIC ACID	1\% aqueous	+	C	NITROTOLUENE	Technically pure	0	c
MARMALADE		+	+	NITROUS GASES	Low, wet \& dry	+	c
MERCURY	pure	+	+	OLEIC ACID	Technically pure	+	\bigcirc
MERCURY SALTS	Cold saturated aqueous	+	+	OLEUM	10\% SO3	+	c
METHANE	Technically pure	+	C	OLEUM VAPOURS	traces	+	c
METHANOL	all	+	+	OLIVE OIL		+	c
METHYL ACETATE	Technically pure	-	C	OXALIC ACID	Cold saturated aqueous	+	+
METHYL AMINE	32\% aqueous	0	C	OXYGEN	all	+	+
METHYL BROMIDE	Technically pure	-	C	OZONE	Up to 2\% in air Cold saturated aqueous	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$
METHYL CHORIDE	Technically pure	-	c	PALM OIL, PALM NET OIL		+	C
METHYL ETHYL KETONE	Technically pure	-	+	PALMITIC ACID	Technically pure	+	C
METHYL CHLORIDE	Technically pure	-	c	PARAFFIN EMULSION	Usual commercial aqueous	+	C
MILK		+	+	PRAFFIN OIL		+	C
MINERAL WATER MIXED ACIDS (i)		+	+	PERCHLORIC ACID	10% aqueous 70\% aqueous	$+$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
Sulphuric	48\%			PERCHLOROETHYLENE	Technically pure	-	C
Nitric Water	$\begin{aligned} & 49 \% \\ & 3 \% \end{aligned}$	+	+	PETROLEUM	Technically pure	+	C
	50\%	+	+	PETROLEUM ETHER	Technically pure	+	c
	$\begin{aligned} & 31 \% \\ & 19 \% \end{aligned}$			PETROLEUM JELLY	Technically pure	O	C
	10\%	+	+	PHENOL (carbolic acid)	Up to 10% aqueous Up to 90% aqueous	$\begin{aligned} & + \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
	$\begin{aligned} & 20 \% \\ & 70 \% \end{aligned}$			PHENYLHYDRAZINE	Technically pure	-	C
MINERAL ACIDs (ii) Nitric	3 parts	0	0	PHENYLHYDRAZINE Hydrochloride	aqueous	\bigcirc	c
Hydrofluoric Sulphuric	1 part 2 parts			Phosgene	Liquid Technically pure Gaseous Technically pure	$+$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
KEY	commended te Recommended	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \end{aligned}$	Conditio Consult	commended rth Tech. Service Dept.			

Hepworth

CHEMICAL RESISTANCE TABLE

uPVC PIPE, FITTINGS AND E.P.D.M SEALS

Hepworth

CHEMICAL RESISTANCE TABLE

uPVC PIPE, FITTINGS AND E.P.D.M SEALS

MEDIUM (NAME)	CONCENTRATION	RATING @ 20°		MEDIUM (NAME)	CONCENTRATION	RATING @ 20°	
		PVC-U	EPDM			PVC-U	EPDM
SULPHURIC ACID	Up to 40% aqueous	+	+	WATER	condensed	+	+
	Up to 60\% aqueous	+	+			+	+
	Up to 80% aqueous	+	+	WATER	Distilled deionised	+	+
	90\% aqueous	+	+	WATER	drinking	+	+
	96\% aqueous	+	+	WATER		+	+
SULPHUROUS ACID	Saturated aqueous	+	c		solvent		
SULPHURIC CHLORIDE	Technically pure	-	c	WAX ALCOHOL	Technically pure	+	+
tallow	Technically pure	+	c	WETTING AGENTS	Up to 5\% aqueous	+	+
TANNIC ACID	All aqueous	+	+	WINES (red \& white)	usual commercial	+	+
TANNING EXTRACTS from plants	usual	+	C	WINE VINEGAR	Usual commercial	+	+
TARTARIC ACID	All aqueous	+	c	YEAST	All aqueous	+	+
TETRACHLOROETHANE	Technically pure	-	c	YEAST WORT	Working concentration	+	+
TETRAETHYL LEAD	Technically pure	+	c	XYLENE	Technically pure	-	C
TETRAHYDROFURAN	Technically pure	-	\bigcirc	ZINC SALTS	All aqueous	+	+
TETRAHYDRONAPHTALENE (tetralin)	Technically pure	-	C				
THIONYL CHLORIDE	Technically pure	-	c				
toluene	Technically pure	-	c				
THIONYLPHOSPHATE	Technically pure	-	+				
TRICHLOROETHANE	Technically pure	-	c				
TRICHLORACETIC ACID	Technically pure	0	0				
	50% aqueous	+	0				
TRICHLOROETHANE	Technically pure	-	c				
TRICRESYL PHOSPHATE	Technically pure	-	+				
TRIETHANOLAMINE	Technically pure	\bigcirc	c				
TROCTYL PHOSPHATE	Technically pure	-	c				
TURPENTINE OIL	Technically pure	+	c				
UREA	Up to 30% aqueous	+	c				
URINE		+	+				
VEGETABLE OILS \& FATS		+	+				
VINEGAR	Usual commercial	+	+				
VINYL ACETATE	Technically pure	-	+				
VINYL CHLORIDE	Technically pure	-	+				
VISCOSE SPINNING SOLUTION		+	c				
WATER GASES containing carbon dioxide	all	+	+				
CARBON MONOXIDE	all	+	+				
HYDROCHLORIC ACID	all	+	+				
HYDROGEN FLOURIDE	traces	+	+				
NITROUS GASES	traces	+	+				
SULPHUR DIOXIDE	traces	+	+				
SULPHUR TRIOXIDE	traces	+	+				
SULPHURIC ACID	all	+	+				
$\begin{array}{lll}\text { KEY } & + & \text { Recom }\end{array}$	nended commended	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \end{aligned}$	onditional nsult He	mended ech. Service Dept.			

NOTES

\qquad
\qquad
\qquad
\qquad
\qquad

Hepworth

NOTES

NOTES

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

U.A.E OFFICES

ABU DHABI

P.O. Box: 4894, Abu Dhabi, UAE

Tel: +971 26727585
Fax: +971 26783578
Email: hpmeauh@corys.ae

AL AIN

P.O. Box: 80862, AI Ain, UAE

Tel: +971 37210727
Fax: +971 37211292
Email: hpmealn@corys.ae

QATAR OFFICE

DOHA
HEPWORTH PME (QATAR) W.L.L
P.O. Box 50207, Doha, Qatar

Tel: +974 44506810
Fax: +974 44506811
Email: info@hepworthpme.com.qa

HEAD OFFICE

HEPWORTH PME LLC

DUBAI

P.O.Box 2345, Dubai, UAE

Tel: +971 42894670
Fax: +97142894620 / 1

MESAIEED

HEPWORTH PME (QATAR) W.L.L.
P.O. Box 50207, Mesaieed, Qatar

Tel: +974 44760588
Fax: +974 44760525

OMAN

CORYS PIPE INDUSTRY LLC
P.O. Box 117, PC 130

Muscat, Sultanate of Oman
Tel: +968 24217626/20
Fax: +968 24210032
Email: info.oman@corys.ae

BAHRAIN

HEPWORTH W.L.L
Building 1, Avenue 0010
P.O. Box 143, Manama, Bahrain

Tel: +973 17672050
Fax: +973 17672583
Email: info.bahrain@corys.ae

SAUDI ARABIA

ABDUL GHAFFAR INDUSTRIES LLC
AI Nuwar Bint Malik Street,
Building 18-Al Rawdah District
Tel: +966 547900444
Email: info.ksa@corys.ae

[^0]: * Non standard

